Projections of
 Points

- Girish Hanumaiah

1. (15) A point P is 30 mm infront of $V P, 40 \mathrm{~mm}$ above HP and 50 mm from RPP. Draw its projections.

Solution:

2. (18), (42) A point is 30 mm infront of VP, 20 mm above HP and 25 mm infront / behind / from LPP. Draw its projects and name the side view.

Solution:

3. (16) A point P is 45 mm above HP, 60 mm behind VP and 30 mm from RPP. Draw the three principles view of the point. Also state the quadrant in which it lies.

Solution:

4. (19) A point is 40 mm behind VP, 15 mm above HP and 25 mm infront / behind / from LPP. Draw its projections and name the side view.

Solution:

5. (43) A point is 40 mm behind VP, 20 mm above HP and 30 mm infront / Behind / from LPP. Draw its projections and name the side view.

Solution:

6. (22) A point is 35 mm below HP, 20 mm behind VP and 25 mm behind / infront / from RPP. Draw its projections and name the side view.

Solution:

7. (47) A point is 35 mm below HP, 15 mm behind VP and 25 mm behind / infront / from RPP. Draw its projections and name the side view.

Solution:

8. $(6,17)$, Draw all the three views of a point P lying 60 mm below $\mathrm{HP}, 70 \mathrm{~mm}$ infront of VP and 40 mm from RPP. Also state the quadrant in which it lies.

9. (20) A point is 30 mm behind VP, 30 mm above HP and 25 mm infront / behind / from LPP. Draw its projections and name the side view.

Solution:

10. (44) A point is 30 mm behind $V P, 30 \mathrm{~mm}$ above HP and 20 mm infront / behind / from RPP.

Draw its projections and name the side view.
Solution:

11. (21) A point is lying on HP, 20 mm behind VP and 25 mm behind / infront / from RPP. Draw its projections and name the side view.

Solution: Point A lies in 2nd as well as 3rd Quadrant

Point A lies in 2nd Quadrdant

Point A lies in 3rd Quadrant

12. (46) A point is lying on HP, 20 mm behind VP and 35 mm behind / infront / from RPP. Draw its projections and name the side view.

Solution: Point A lies in 2nd as well as 3rd Quadrant

Point A lies in 2nd Quadrdant

Point A lies in 3rd Quadrant

Note: Both the quadrant is shown only for reference. In the examination show only one quadrant
13. (23) A point is lying on VP, 20 mm below HP and 30 mm behind / infront / from LPP. Draw its projections and name the side view.

Solution:
Point A lies in 3rd Quadrant

Point A lies in 4th Quadrant

14. (45) A point is lying on VP, 10 mm below HP and 30 mm behind / infront / from LPP. Draw its projections and name the side view.
Solution:

Point A lies in 3rd Quadrant

Point A lies in 4th Quadrant

Note: Both the quadrant is shown only for reference. In the examination show only one quadrant
15. (34) Point A is 20 mm above HP and in the 1st quadrant. Its shortest distances from the $X Y$ line is 40 mm . Draw the projections determine its distance from VP.

Solution:

ANSWERS
$\mathrm{L}=34.64 \mathrm{~mm}$
Point A is 34.64 mm infront of VP.
16. (39) Draw the projections of a point A lying 30 mm above HP and in first quadrant. If its shortest distance from the line of intersection of HP and VP is 50 mm . Also find the distance of the point from VP.
Solution:

ANSWERS
$\mathrm{L}=40.00 \mathrm{~mm}$
The point A is 40.00 mm infront of VP.
17. (9) A point G is 25 mm below HP and is situtated in the third quadrant. Its shortest distance from the intersection of XY and X 1 Y 1 is 45 mm . Drawits projection and find its distance from VP.

Solution:

ANSWERS
$\mathrm{L}=37.42 \mathrm{~mm}$
Point G is 37.42 mm behind VP
18. (33) A point A is 40 mm infront of VP and is situated in the fourth quadrant. Its shortest distance from the intersection of XY and X 1 Y 1 , is 45 mm . Draw its projections. Also find distance from VP.

Solution:

ANSWERS
$\mathrm{L}=20.62 \mathrm{~mm}$
Point $\mathrm{A}=20.62 \mathrm{~mm}$ below HP
19. (3), (27). Draw and state the quadrants in which the following points are located. Assume any distances.
A - front view below XY line and Top view above XY line
B - Front and Top views below XY line.
C - Front and Top views are above XY line.
D - Front view above XY line and Top view below XY line.

Solution:

A lies in 3rd Quadrant
B lies in 4th Quadrant C lies in 2nd Quadrant
D lies in 1st Quadrant
20. (2), (50). Draw the projections of the following points on the same $X Y$ line, keeping convenient distance between each projectors. Name the quarants in which they lie.
E-30 mm below HP and 25 mm behind VP.
F - 35 mm below HP and 30 mm infront of VP.
G - on HP and 30 mm infront of VP.
H - on HP and 35 mm behind VP.
Solution:

E-3rd Quadrant
F - 4th Quadrant
G-1st as well as 4th Quadrant
H-2nd as well as 3rd Quadrant
21. (26). Draw the projections of the following points on the same $X Y$ line, keeping convenient distance between each projectors. Name the quadrant in which they lie.
M-30 mm below HP and 25 mm behind VP.
$\mathrm{N}-35 \mathrm{~mm}$ below HP and 30 mm infront of VP.
P - on HP and 30 mm infront of VP.
Q - on HP and 35 mm behind VP.

Solution:

M - 3rd Quadrant
N - 4th Quadrant
P-1st as well as 4th Quadrant
Q-2nd as well as 3rd Quadrant
22. (1). Draw the projections of the following points on the same $X Y$ line, keeping convenient distance between each projectors. Name the quadrants in which they lie.
A - 30 mm above HP and 35 mm infront of VP.
B-35 mm above HP and 40 mm behind VP.
C - 40 mm above HP and on VP.
D - 35 mm below HP and 30 mm infront of VP.

Solution:

A-1st Quadrant
B - 2nd Quadrant
C-1st as well as 2nd Quadrant
D - 4th Quadrant
23. (25) Draw the projections of the following points on the same $X Y$ line, keeping convenient distance between each projectors. Name the quadrants in which they lie.
P-20 mm above HP and 35 mm infront of VP.
Q-30 mm above HP and 40 mm behind VP.
R-40 mm above HP and on VP.
S - 35 mm below HP and 30 mm infront of VP.

Solution:

P-1st Quadrant
Q - 2nd Quadrant
R-1st as well as 2nd Quadrant
S - 4th Quadrant
24. (49) Draw the projections of the following points on the same XY line, keeping convenient distance between each projectors. Also state the quadrants in which they lie.
P-25mm above HP and 35 mm infront of VP.
Q-30 mm above HP and 40 mm behind VP.
R-40 mm above HP and on VP.
S - 35 mm below HP and 30 mm infront of VP.

Solution:

P-1st Quadrant
Q-2nd Quadrant
R - 1st as well as 2nd Quad.
S - 4th Quadrant
25. (35) Draw the projections of the following points on the same XY line, keeping convenient distance between each projectors and state the quadrants in which they lie.
P-10 mm above HP and 15 mm infront of VP.
Q-15 mm above HP and 25 mm behind VP.
R-25 mm below HP and in VP.
S - 40 mm above HP and in VP.
Solution:

P-1st Quadrant
Q-2nd Quadrant
R-3rd as well as 4th Quadrant
S-1st as well as 2nd Quadrant
26. (40) Draw the projections of the following points on the same reference $X Y$ line and state the quadrants in which they lie.
E-35mm above HP and on VP.
F - 30 mm below HP and on VP.
G - on HP and 25 mm behind VP.
H - on HP and 30 mm infront of VP.

Solution:

E-1st as well as 2nd Quadrant
F - 3rd as well as 4th Quadrant
G-2nd as well as 3rd Quadrant
H-1st as well as 4th Quadrant
27. (11) Draw the projections of point G which is in 1st Quadrant such that it is equidistant from HP and VP. The point is 25 mm from RPP. Determine its distance from HP and VP.

Solution:

Point G is 17.68 mm above HP and 17.68 mm infront of VP.
28. (4) A point 30 mm above $X Y$ line is the front view of two points A and B. The top view of A is 40 mm behind VP and the top view of B is 45 mm infront of VP. Draw the projections of the points and state the quadrants in which the points are situated.

Solution:

A - 2nd Quadrant
B-1st Quadrant
29. (28) A point 30 mm above $X Y$ line is the front view of 3 points P, Q and R. The top view of R is 40 mm behind VP, the top view Q is on $X Y$ line and top view of point P is 45 mm infront of VP. Draw the projections of the points and state the quadrants in which the points are situated.

Solution:

P-1st Quadrant
Q-1st as well as 2nd Quadrant
R-2nd Quadrant
30. (41) A point 20 mm below the reference $X Y$ line is the top view of three points P, Q and R. P is 20 mm below HP, Q is 35 mm above HP and R is on HP. Draw the projections of the three points and state their positions and quadrants in which they are situated.

Solution:

P-20 mm below HP and 20 mm infront of VP - 4th Quadrant
Q-35 mm above HP and 20 mm infront of VP - 1st Quadrant
R - on HP and 20 mm infront of VP - 1st as well as 4th Quadrant
31. (24) A point A is 20 mm above HP and 25 mm infront of VP. Another point B is 25 mm behind VP and 40 mm below HP. Draw their projections when the distance between their projectors parallel to XY line is zero mm . Add the right side view only to point B .

Solution:

32. (48) A point P is 15 mm above HP and 25 mm infront of VP. Another point Q is 25 mm behind VP and 40 mm below HP. Draw their projections when the distance between their projectors parallel to XY line is zero mm . Add the right side view only to point Q .

Solution:

33. (30) The common point 40 mm below $X Y$ line represents not only the front views of three points A, B and C but also the top view of point C. The top view of point B is lies on $X Y$ line and top view of point A lies 50 mm above it. Draw the projections of the points and add the right side view to the point A only. Also state in which the quadrants the points lie.

Solution:

A - 3rd Quadrant
B - 3rd as well as 4th Quadrant C - 4th Quadrant
34. (7), (31) A point P is on HP and 35 mm infront of VP. Another point Q is on VP and below HP. The line joining their front views makes an angle of 30 deg. to $X Y$ line, while the line joining their top views makes an angle of 45 deg. with $X Y$ line. Find the distance of the point Q from HP.

Solution:

ANSWERS
$\mathrm{L}=20.21 \mathrm{~mm}$
Q is 20.21 mm below HP
35. (12),(36) A point R is 25 mm above HP and 20 mm infront of VP. Another point S is on HP and 30 mm behind VP. The distance between their projectors measured parallel to the line of intersection VP and HP is 50 mm . Find the distance between top views of points R and S.

Solution:

The distance between top views of points R and S is 70.71 mm
36. (13), (37) A point M is on HP and 30 mm infront of VP. Another point N is 20 mm below HP and 20 mm infront of VP. The distance between their projectors measured parallel to XY line is 50 mm . Find the distance between front views of the point M and N .

Solution:

The distance between front views of M and N are 53.85 mm
37. (14), (38) A point P is on HP and 30 mm infront of VP. Another point Q is on VP and 40 mm above HP. The distance between their projectors parallel to $X Y$ line is 50 mm . Find the distance between their front and top views of the points P and Q.

Solution:

Distance between their front views of P and Q is 64.03 mm Distance between their top views of P and Q is 58.31 mm
38. (8) Two points R and S are on HP. The point R is 35 mm infront of $V P$, while S is 50 mm behind VP. The line joining their top views makes an angle of 40 deg. with XY. Find the horizontal distance between the two projectors.

Solution:

39. (32) Two points P and Q are on HP. The point P is 30 mm behind $V P$, while Q is 50 mm infront of VP. The line joining their top views makes an angle of 40 deg. with XY. Find the horizontal distance between their projectors parallel to XY line.

Solution:

40. (29) A point M is 30 mm infront of $V P$ and 20 mm above HP, another point N is 15 mm behind VP and 25 mm below HP. The horizontal distance between the points parallel to XY line is 50 mm . Draw the projections of the points M and N and join their front and top views. Draw the right side view for the point N only.

Solution:

41. (5) A point A is 30 mm infront of VP and 40 mm above HP. Another point B is 20 mm behind VP and 35 mm below HP. The horizontal distance between the points measured parallel to $X Y$ line is 60 mm . Draw the three projections of the points. Join their front and top views.

Solution:

42. (10) A point S is in first quadrant and equidistant of 50 mm from all the three principal planes. Draw the projections of the point. Draw all the three views of the point.

Solution:

